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AbItrad-A numerical solution method for axisymmetric elastic bodies is presented. The advance is
outlined in general for the case of arbitrary boundary conditions and demonstrated in detail for bending
problems. To show the efficiency of the method two notch problems are calcUlated.

I. INTRODUCTION
In solving engineering problems numerical methods are becoming more and more important
Forafew years the Boundary Element Method (BEM)hasoftenbeenused besides the weD-known
Finite Element Method (FEM). In the meantime this intearal equation approach has been
developed into a powerful instrument in solving engineering problems especially potential and
elasticity problems, (see Refs. [l-4) et al.).

In the case of linear elasticity the integral equation which is the basis of the whole
procedure, results from Betti's reciprocal work theorem:

J(1iIUj - U;IJ) dO =O.
n

(1.1)
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According to this theorem, on the boundary of a region B the displacement vector Ul and the
stress vector tl of the real problem are connected with the "auxiliary" tensors Uil and Til which
belong to a reference group known in advance. In the BEM either the Kelvin-solution of an
infinite body or the ring source solutions in the axisymmetric case, which are derived from it,
are used as a reference group. The index i of the auxiliary groups U;I or TIJ respectively,
indicates the direction of force in the case of the Kelvin-sotutionor the kind of the ring source
in the axisymmetric case. This wilt be explained in detail later in this paper.

The so-called source point P, indicating the location at which the force acts. is assumed
to be situated on the boundary and has to be specially treated in the integration of eqn O.t)
because of the singular nature of the reference group at point P. With a suitable limit process,
for instance described in[4), we obtain an integral equation of the third kind, defined by
Hilbert[.5]

CI/(P)Uj(P) +JTI/(P.Q)uI(Q)dO(Q)= JUil(P.Q)tJ(Q)dO(Q), 0.2)
n n

where CIJ(P) is a field of constants depending on the smoothness of the boundary in P and (1.2)
is the starting equation of the BEM. The field point Q denotes the actual boundary point.

The intepation in eqn (1.2) needs only to be done on the boundary of the· domain and
therefore the probfem tums out to be one dimension lower than in the FBM. for example. This
is an essential advantqe of the described procedure because of the lower elort of the
discretization and data preparation as well as in lower computer run time in most cases. After
the first determination step. which yields an of the information on the boundary, a second has
to be taken either by using the Somisliana formula (see[.D or by applying the substructure
technique[6) if the stress and deformation fields are required at any point of the interior.
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2. THE AXISYMMETRIC DOMAIN WITH NON·AXISYMMETRIC
BOUNDARY VALUES

The extension of the BEM to axisymmetric elasticity problems was investigated in[7] and,
independent of it, in[S]. Also in [7] the fundamental formulation for the extension of the method
to a semianalytical treatment of axisymmetric bodies with non-axisymmetric boundary values
was already given without an explicit presentation of the necessary kernel functions. Later, this
idea was again taken up, but also without leading to a practical procedure [9}. Our present paper
consists of an explicit presentation of the method in continuation of[7}. The fundamental
procedure is particUlarly demonstrated on the example of the bending moment transmission of
a notched body of revolution.

The possibility of a semianalytical treatment of that group of problems depends on a
sufficiently exact representation of the boundary values in a series of orthogonal functions of
the circumferential coordinate q>. For example, let us consider a Fourier series representation of
the boundary values Uj and tit respectively:

aj =L [aj. cos(nq» +af,.* sin(nq»].
n

(2. J)

It can be shown with a suitable choice of the reference group and by applying the orthogonality
relations (see (7]), that the integration in (l.t) in respect to the circumferential direction q> can be
evaluated exactly for each term of the Fourier series. As a result, the original three-dimensional
problem turns out to be a series of quasi-two-dimensional ones, which are equivalent to
one-dimensional problems within the BEM because of the fact that the integration has only to be
carried out along the meridian of the axisymmetric body. Ifonly a few terms of the series (2.1) are
needed, the semianalytical treatment has important advantages in contrast to real three
dimensional methods.

In the following we take up only the term n =1 of the Fourier series (2.1), because of the
most practical significance, which enables us to solve the bending moment as well as cross
force transmission problems in a semianalytical manner. The normal force transmission is exactly
the axisymmetric case, reading n =0 (see [7}). Up to now the index n = 1defining the first term of
the Fourier series has been omitted. Moreover we use the fact that in the case of an axisymmetric
body a symmetric displacement field with respect to the plane q>:= 0 of a T, q>, z-cylindrical
coordinate system may cause a symmetric loading system only, and also vice versa. An analogous
statement holds in the antisymmetric case too. Together with the superposition principle it means,
that the symmetric group as well as the antisymmetric one can be solved independently and
afterwards be superposed. Therefore in the following we will deal with the symmetric case only.

The symmetric boundary value vector, following from the splitting of eqn (2.1), reads, in
general

(2.2)

where a stands for u or t, respectively and the amplitude functions ar(T, z), a~(r, z) and a.{r, z)
are equal to the Fourier coefficients in eqn (2.1). The antisymmetric boundary value vector is
built analogous to (2.2), only the functions sinq> and cos~ are exchanged.

As we already mentioned, in the case of axisymmetric bodies, rina source solutions were
used as a reference poop, if the 8BM is taken as the solution method. A ring source solution
has to be understood as the elastic infinite.~y solution, due to a line loaded circle with a
radius p. We distinauish radial, circumferential or axial ring sources, dependina>on the direction
of the line load. Furthermore we denote a ring source being of the class n, if the line loads vary
with cos(ntp) or sin(ntp).

In the following we have only to investigate the ring source of class one. The line load
vector will split up, in relation to the circumferential coordinate, into a symmetric part and a
antisymmetric one.
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For the following derivation of the ring source solutions (see Fig. I) it is temporarily
necessary to introduce a reference coordinate system p, "', (. Then the symmetric line load
vector reads

q(p, "', () =epqp(p, () cos'" +e,.q.(p, () sin'" +e~,(p, () cos"'. (2.3)

The ring source solution can be derived from the Kelvin solution as follows. First we determine
the displacement and stress state at point Qcaused by the differential force dF acting at P (see
Fig. 2). Afterwards we integrate the real line load distribution of the ring source.

The local vector R, connecting P and Q, reads in the r, fP, z-coordinate system

R=e,[r-p cos(fP - "')]+elP sin(fP - "')+ezi (2.4)

where i =z - (and the amplitude IRI =VCr +p2 - 2rp cos(fP - "')+12
). As can be read in [10], a

differential force dF = emdFmat P causes a displacement field at Qas follows

and also a stress field

i,m=r,fP,Z (2.5)

i,k,m=r,fP,z (2.6)

i

y

Fig. 2. Definition figure for the determination of the ring sources.



866

as

M. MAYR et al.

In the case of the symmetric ring source of class one, a differential line load vector acts at P

(2.7)

Each of the vector components e(i) dF; causes a special ring source state. To introduce these
vector components into eqn (2.5) and (2.6), formulated in the global r, lp, z-cylinder coordinate
system, each of the terms eli) dF; (i = p, cfJ, () has to be expressed in the global system too,
namely

e(i) dF; = em dFmi = e, dFri +e" dF<Pi +ez dFzi'

In detail this reads

epdFp = e,qp coscfJcos(lp -cfJ)p dcfJ -e"qp coscfJ sin(lp -cfJ)p dcfJ

ep dF", = e,q", sincfJ sin(lp -cfJ)p dcfJ +e",q", sincfJ cos(lp -cfJ)p dcfJ

ep dFp = epqp coscfJp dcfJ.

(2.8)

(2.9)

Now introducing the load components eli) dF;, relating to (2.9), into eqns (2.5) and (2.6), the
differential displacement and stress fields are found for each different kind of ring source. With
the difference angle a =lp - cfJ they can be written as

and

du?) = - cos(lp - a)fpJ(a) da

du/"') = - sin(lp - a)fl/li(a) da

du/,) = - cos(lp - a)f{j(a) da

d7W =- cos(lp - a)gpjk(a) da

drjtl = - sin(lp - a)g"'jk(a) da

drjp =- cos(lp - a)g{jk(a) da.

(2.10)

(2.11)

The explicit expressions of the functions fiJ(a) and gijk(a), respectively, (i = p, cfJ, () are omitted.
In the present case, where we consider only ring sources of first degree, the differential

displacement and stress fields are integrated in an analytical way. In the case of higher degrees
it is conjectured that it would require less effort to perform the integration in a numerical way
because with increasing degree the analytical expressions for the displacement and stress fields
become more and more bulky. As a result of integrating (2.10) and (2.11), respectively, along the
whole circle of the ring source the finite displacement and stress fields follow, with which we
can derive the auxiliary groups Uij and Tij, necessary in eqn (1.2).t

After integration, the reference system p, cfJ, , is no longer needed. For convenience the
global system is used to distinguish the different kinds of ring sources. The auxiliary groups Uij
may be taken immediately from the corresponding displacement fields (with i =r, lp, z now),
whereas the stress group T;j is given by using Cauchy's equilibrium condition on the boundary.

With helpful abridgments the auxiliary groups are separated in lp as

(2.12)

(2.13)

where Gij can be changed to Uij or Tij, respectively. The expressions for Gij and Gij are listed
up in the appendix. It may further be shown, that

Gij == 0 with j = lp

Gij == 0 with j = r, z.

tThe authors thank Mr. Dipl.-Ing. W. Escher for his useful help in determining the auxiliary groups.
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Therefore it is clear, that the functions a,j are symmetric functions as well as the boundary
values or the line load vector, respectively.

With the above, Betti's theorem (1.1) delivers the relation (i =r, lp, z) with respect to the
three kinds of ring sources)

2..

f f [(T;,u, - Uj,l,) COSlp +(T;.,u., - U,.,t.,) sinlp +(T;zuz- V'ztz) COSlp] dlpr(s)ds = 0 (2.14)
0, .,=0

where O. is the meridian of the axisymmetric body and ds is a differential line element on 0,.
Considering (2.13), in (2.14) the integration with respect to lp can be carried out separately,
which, with the abridgment

leads to the simple relation

G~ = {C!lj with j~ lp
1/ G,j with j = lp (2.15)

(2.16)

where dO, =21Tr(s) ds. In the following step from Betti's theorem to the starting equation of
the BEM, analogous limit processes as in the axisymmetric case have to be carried out, leading
to

C~(P)Uj(P) +f T~(P, Q)Uj(Q) dO, =f U~(P, Q)tj(Q) dO,. (2.17)
0, 0,

The field of constants C3(P) must not be explicitly known but may be eliminated as shown in
. the next chapter. Information about the interior of the domain can again be obtained with either
the Somigliana formula or with the substructure technique.

3. NUMERICAL TREATMENT
Equation (2.7) can be solved for a general case only in a numerical way. For a convenient

representation of the boundary values a normal-tangential-coordinate system will be used in the
following. The transformed terms are indicated by an apostrophe. Furthermore, the meridian,
on which the integration has to be done, is represented piecewise by simple functions (straight
line, circle, parabola) and divided in n intervals. Within such a boundary element the mag
nitudes ui of the boundary displacements as well as the magnitudes ti of the boundary tractions
are expressed by polynomial functions

xU) =t M"'Wxj'"
",-I

xi =ui, ti (3.1)

with the intrinsic boundary coordinate (, where - 1S ( S 1. The summation of the products of
shape functions M'"W and node values xi'" has to be carried out to the degree q - 1 of
approximation (see[6,ll)). In the procedure presented here linear, quadratic, and cubic poly
nomial functions are alternatively possible.

With (3.1) eqn (2.17) reads in the discretized manner (see (11))

Ct'(P)u;{P) +f t [u/''''! Tt'(P, ()M"'{()JWr«() d(]
t.:1 Ift-1

'/

= ~ ~I [t/",I! ut'(P, ()M"'WJWr«()d(] (3.2)
'/
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where J«() is the well-known Jacobi function and $1 is the lth integration interval. Because of
the subdivision of the meridian into n intervals, the boundary integral turns out to be a sum of n
parts where each may be calculated separately according to the polynomial representation of
the boundary value amplitudes. The terms uri or t/"", respectively, are the boundary value
amplitudes of the mth node within the Ith boundary element.

For each location of the source point we get three scalar equations with (3.2). If P
sequentially takes the place of all node points of the meridian, according to the given boundary
conditions we get a system of linear equations for the determination of the unknown boundary
value amplitudes uri and t/"", which reads with the matrix formulation

Au = Bt. (3.3)

Here the vector u contains all the node displacement components U/"'I and the vector t contains
the node traction components t/"'/. The elements of the square matrices A and B result from
the eqn (3.2) by integrating along the actual boundary element.

If P is not situated in the actual interval of integration the Gauss quadrature formula is
used. If P and Q are in identical positions the integrant becomes singular. Then the diagonal
elements of the matrix B may still be calculated with a modified Gauss formula, because the
singularity is of a logarithmic order only, as can be shown easily. The diagonal elements of the
matrix A, however, have higher order singularities and therefore they have to be treated in a
special way. As an analogy to[6], we proceed as follows. Simple solutions in elasticity with
non-axisymmetric boundary value distributions are used which deliver all necessary in
formation at the boundary of the axisymmetric body under investigation. Such solutions can be
rigid body motions or may be taken from the well-known solutions of the bi-potential equation.
In this way these solutions deliver completely known vectors u* and t* for determining the
unknown diagonal elements of the matrix A.

Therefore an integration of higher order singularities as well as the explicit knowledge of the
coefficients ct'(P) are no longer necessary.

After this the matrix equation (303) has to be rearranged depending on the boundary value
problem and then it may be solved with a usual Gauss algorithm. In the end aU displacement
and traction amplitudes of each node are known. The stress amplitudes in the normal or
circumferential direction, respectively, which are not taken directly from (303), can be deter
mined afterwards with the equilibrium condition at the boundary, the kinematic relations and
Hooke's law.

4. EXAMPLES

To demonstrate the efficiency of the described method two examples are investigated. First
we take a cylinder with a spherical cavity under a pure bending moment. For a ratio piR = OJ
(Fig. 3) the convergence of the stress concentration factor ak versus the computer run time is

513 -ref., [12]

~::03R .

M~
B

o linear
It quadratic

o cubic4.0I
100f-----,i-------.i=-----c:i~:__-___:_~--

5 10 15 (s] computer run time

Fig. 3. Cylinder with a spherical cavity under pure bending.
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Fig. 4. Cylinder w.ith a circumferential notch under pure bending.

shown.t Thereby a linear, quadratic or cubic degree of approximation was used sequentially.
The values in brackets point to the number of intervals along the notch. It is obvious that the
convergence is quite good. As to the degree of approximation of the boundary value functions
no remarkable difference is evident in this simple example.

In a second example a cylinder with a circumferential notch (see Fig. 4) loaded with a pure
bending moment is investigated. In Fig. 4 the stress concentration factor, taken from the BEM,
is compared with results given by Neuber [13], by Ruhl [14] or by the diagrams of Peterson [15]. It is
obvious that the values taken from the BEM are in good agreement with those of Peterson.

In both examples the stress and displacement fields in the interior of the domain are not
determined. As earlier mentioned, however, this may easily be done either pointwise with
Somigliana's formula or with the substructure technique.

5. CONCLUDING REMARKS

A general procedure for axisymmetric bodies with non-axisymmetric boundary values is
demonstrated. The major advantage is the reducing of an otherwise three-dimensional problem
to a sequence of one-dimensional ones. The method is outlined especially for problems with
boundary values, which may be represented by the first term of a Fourier-series. A computer
program is written in which the meridian can be approximated by straight lines, circles or
parabolae, where as for the approximation of the boundary displacements and tractions linear,
quadratic or cubic polynominal functions alternatively may be chosen. The method delivers
sufficient results as can be seen from the examples.
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APPENDIX
Displacement fields of ring sources:

U" =4Gr
1
p2C

8
({ -~[(\1-16p)CI+(17 -16p)£2]+§C,z- £')}E

+~C6[2(1-2P)CI + (5 _4p)£2] +2(5 -4p)rp2}K)

- I
U,~ = - 3Grp2C8

(C,[(5 -4p)C3+2(1-2p)p2]E+ (2(7 -Sp)rp2- CJ(5 -4p)C3+ 2(1 - 2p)p2]}K)

Un = 2Gr~2C8{ [ C, + g:(C7 + i
2
)JE - 2C3K}

- £
U,~ =GrpCg[ - C,E+ C~}

UZZ = Gr~C8{[ - (3 - 4p)C, +~£2 JE +[(3 - 4p)C1+2(1- 2p)£2]K}.

Stress fields of ring sources:

T" =4r3~2C8((HC,[ - 2(\ +4v)r +(\3 - 20p)p2 +2(\ 1-IOp)£2] + g:[4(I- 2pXCl+ r(£2 - p2»

+4Srp2- 6C6(4r2+ p2 - 2£2)] +24"~ - ~~>8rp2c2 + C6(i' + C7C, - 2r(2p2+ i 2))) }n,

- 2ri {(S -4v)C, - ~p2rC3 + C6((I +4p)p2_(\ 1-4v)Cl )] + C~~S24(C,z- £')}n,)E

+ ({~7 -Sp)C,Cs-4(1-2p)(r(r + 2p2+4i2)+3Cl) +6rt4r +5p2+6i2)

-IS(Cl
2+ p2(2r + i 2»+ C~Cs[Srp2C2+ C6(i' + C7C1 -2r(2p2+ i 2))) }n,

+2ri {(7 -8p)C, +(\3 - 8V)£2 + C~C/C,z- i')}n,)K)

t,~ =- 4r3~iC8(2({C,[3(p2 - i2)-~7 -SpXr +4C2)] +§C,z- r) }n,
+2ri {(S -4p)C, +§C7 + i 2)}n,)E + (H(5 -16p)C,Cs+ 2C6[4(1 - 2pjC2+9£2] + C,z- £' }n,

+Sri{p2 - (3 -2P)C6}n, )K)
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t, '" 2r~2c.((i{ -(5 -4v)C.+ g:[O +4v)p2-(I1-4v)C)]+ 12rg> c:~~rt<Ci - i') In,

+2r{(l-2v)C.+ g:(l-2V)(C7+i2)+6i2~ -4i2C:ilc7+ i~}nl}E

+(.f{(7 -8v)C1+(13 -8,,).f2 +C:C/C72- i') }n,

+2t { - 2{l- 2,,)r - (5 -4,,)P+C:ct(C7 +i 2)In,)K}

t~ '" -riorc.(/{iCJ(1l +s,,)r -(37-32v)C21-~C7+P)2JIl,
p • \ j

+2ri {(S -4v)C. +g:(C, +i 2)JIl,}E+4({-r[2(2 - v)r +¥11-7v)p2 +(5 -2v)i2]+¥5 -4")Cl}n,

- ril(3 - 2v)C2+2(1- v)r2]n,}K)

f ... '" fJp\C.((HC.HS-7v)r +(17 -13v)C2]-~C,- i 2)(1- v)In,
-2ri {(2- ,,)C. +%;=0- v)In,)E+ ({ -¥2 - ")C.C$ +C6[vr-(6-S,,)C2)}n.
+2ri(3 - 2")C6n,)K)

t., '" rp~C8 ( ( - i{(S -4,,)C. +§cc, + £2)In, + 2r{(1- 2v)C. + g:i2In, )E
+2(i{20- ,,)r +(3 - 2v)C2)n. - r{(l- 2v)C, +20- v)il}n,}K)

t, "'2r\pCl (/i{3C.+~- ~ r{2(1 h)r+(S+2v)C2]+ CC~iI6r.f2}1l.
• \ $ $ • 5

+2r {0-2v)C,+§(I-2v)(C7+i2)_~i2+ C:~li2(C,+ i 2)}Il,)E
+(4i{2Crl'-C2)- C:C/i2JIl'+2r{ -2(1-21i)p2+0 +41')i2- C:C/l<C,+i2)}n,)K)

f,. '" ,.,;C.((i{3C. +~C7+i 2)}n,+ 2r{0-21i)C.- g:i2}n,)E
- 2(ilr +2C2}n, +rlC, - 2vC6}n,}K}

t" = ?~8(({(l-2v)C.-~1-2V)(C7-i~-~2+ C:i~il<C'+i~}Il.

-2ri {~ [(1- 21')C6-3i2)+CC~ 24i2In,)E -({20-21')p2_0 +4,,)i2+eCc i 2(C,+:2) }n.
$ • $ ~ $

-2ri{0-21')+ c:ct}n,)K)

with I'=Poissoo's ratio; G=shear modulus; K«w/2),K), E('Il'12),K) complete elliptic integrals; P,.,boundary normal
angle; n,=cosl3; 1l, =sintJ; Cl=r+pl; CI",p2+i2; CJ =r+i2; C."'(r+p)2+i2; C$=(r-pj2+i2; C6",r+p2+i2;
C, '" r - p2; C8'" 16".2(1-l'h/«r+ pf+ i 2); K '" v(4rp)/«r+ p)2+ i 2),


